697 research outputs found

    First NASA Workshop on Wiring for Space Applications

    Get PDF
    This document contains the proceedings of the First NASA Workshop on Wiring for Space Applications held at NASA Lewis Research Center in Cleveland, OH, July 23-24, 1991. The workshop was sponsored by NASA Headquarters Code QE Office of Safety and Mission Quality, Technical Standards Division and hosted by the NASA Lewis Research Center, Power Technology Division, Electrical Components and Systems Branch. The workshop addressed key technology issues in the field of electrical power wiring for space applications. Speakers from government, industry and academia presented and discussed topics on arc tracking phenomena, wiring applications and requirements, and new candidate insulation materials and constructions. Presentation materials provided by the various speakers are included in this document

    Controlling a mobile robot with a biological brain

    Get PDF
    The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Some recent research is ongoing in which biological neurons are being cultured and trained to act as the brain of an interactive real world robot�thereby either completely replacing, or operating in a cooperative fashion with, a computer system. Studying such hybrid systems can provide distinct insights into the operation of biological neural structures, and therefore, such research has immediate medical implications as well as enormous potential in robotics. The main aim of the research is to assess the computational and learning capacity of dissociated cultured neuronal networks. A hybrid system incorporating closed-loop control of a mobile robot by a dissociated culture of neurons has been created. The system is flexible and allows for closed-loop operation, either with hardware robot or its software simulation. The paper provides an overview of the problem area, gives an idea of the breadth of present ongoing research, establises a new system architecture and, as an example, reports on the results of conducted experiments with real-life robots

    A new flood risk assessment framework for evaluating the effectiveness of policies to improve urban flood resilience

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this record.To better understand the impacts of flooding such that authorities can plan for adapting measures to cope with future scenarios, we have developed a modified Drivers-Pressures-State-Impact-Response (DPSIR) framework to allow policy makers to evaluate strategies for improving flood resilience in cities. We showed that this framework proved an effective approach to assessing and improving urban flood resilience, albeit with some limitations. This framework has difficulties in capturing all the important relationships in cities, especially with regards to feedbacks. There is therefore a need to develop improved techniques for understanding components and their relationships. While this research showed that risk assessment is possible even at the mega-city scale, new techniques will support advances in this field. Finally, a chain of models engenders uncertainties. However, the resilience approach promoted in this research, is an effective manner to work with uncertainty by providing the capacity to cope and respond to multiple scenariosResearch on the CORFU (Collaborative research on flood resilience in urban areas) project was funded by the European Commission through Framework Programme 7, Grant Number 244047. The work in this paper was partially funded by the PEARL (Preparing for Extreme And Rare events in coastaL regions) project, supported by the European Union's Seventh Framework Programme under Grant Agreement No 603663

    Spatio-temporal dependencies in functional connectivity in rodent cortical cultures

    Get PDF
    Models of functional connectivity in cortical cultures on multi-electrodes arrays may aid in understanding how cognitive pathways form and improve techniques that aim to interface with neuronal systems. To enable research on such models, this study uses both data- and model-driven approaches to determine what dependencies are present in and between functional connectivity networks derived from bursts of extracellularly recorded activity. Properties of excitation in bursts were analysed using correlative techniques to assess the degree of linear dependence and then two parallel techniques were used to assess functional connectivity. Three models presenting increasing levels of spatio-temporal dependency were used to capture the dynamics of individual functional connections and their consistencies were verified using surrogate data. By comparing network-wide properties between model generated networks and functional networks from data, complex interdependencies were revealed. This indicates the persistent co-activation of neuronal pathways in spontaneous bursts, as can be found in whole brain structures

    Global Chemical Transport on Hot Jupiters: Insights from 2D VULCAN photochemical model

    Full text link
    The atmospheric dynamics of tidally-locked hot Jupiters is dominated by the equatorial winds. Understanding the interaction between global circulation and chemistry is crucial in atmospheric studies and interpreting observations. Two-dimensional (2D) photochemical transport models shed light on how the atmospheric composition depends on circulation. In this paper, we introduce the 2D photochemical transport model, VULCAN 2D, which improves on the pseudo-2D approaches by allowing for non-uniform zonal winds. We extensively validate our VULCAN 2D with analytical solutions and benchmark comparisons. Applications to HD 189733 b and HD 209458 b reveal distinct characteristics in horizontal transport-dominated and vertical mixing-dominated regimes. Motivated by the inferred carbon-rich atmosphere by Giacobbe et al. (2021), we find that HD 209458 b with super-solar carbon-to-oxygen ratio (C/O) exhibits pronounced C2H4 absorption on the morning limb but not on the evening limb, owing to horizontal transport from the nightside. We discuss when a pseudo-2D approach is a valid assumption and its inherent limitations. Finally, we demonstrate the effect of horizontal transport in transmission observations and its impact on the morning-evening limb asymmetry with synthetic spectra, highlighting the need to consider global transport when interpreting exoplanet atmospheres.Comment: 18 pages, 20 figures, submitted to Ap

    The RadFxSat-2 Mission to Measure SEU Rates in FinFET Microelectronics

    Get PDF
    The RadFxSat-2 mission was launched January 17, 2021 with Virgin Orbit\u27s LauncherOne under the NASA ELaNa-20 initiative. RadFxSat-2 carries a radiation effects payload designed to investigate single event upsets (SEUs) in sub-65 nm commercial memories, including a FinFET-based memory. Sub-65 nm technologies have demonstrated enhanced sensitivity to low-energy protons, but current models have not considered low-energy protons as a source of SEUs. Missions utilizing the latest commercial technologies could experience a higher error rate than predicted. RadFxSat-2 was designed to assess SEU rates for FinFET SRAMs operated in low-Earth orbit (LEO), a proton-heavy environment. Details of the mission and data collected over the previous two years are presented. Results from RadFxSat-2 suggest that FinFET-based microelectronic technologies are suitable for high-performance, high-density storage in LEO

    Inverse association between blood pressure and pulse oximetry accuracy: an observational study in patients with suspected or confirmed COVID-19 infection

    Get PDF
    BackgroundPulse oximeters are a standard non-invasive tool to measure blood oxygen levels, and are used in multiple healthcare settings. It is important to understand the factors affecting their accuracy to be able to use them optimally and safely. This analysis aimed to explore the association of the measurement error of pulse oximeters with systolic BP, diastolic BP and heart rate (HR) within ranges of values commonly observed in clinical practice.MethodsThe study design was a retrospective observational study of all patients admitted to a large teaching hospital with suspected or confirmed COVID-19 infection from February 2020 to December 2021. Data on systolic and diastolic BPs and HR levels were available from the same time period as the pulse oximetry measurements.ResultsData were available for 3420 patients with 5927 observations of blood oxygen saturations as measured by pulse oximetry and ABG sampling within 30 min. The difference in oxygen saturation using the paired pulse oximetry and arterial oxygen saturation difference measurements was inversely associated with systolic BP, increasing by 0.02% with each mm Hg decrease in systolic BP (95% CI 0.00% to 0.03%) over a range of 80–180 mm Hg. Inverse associations were also observed between the error for oxygen saturation as measured by pulse oximetry and with both diastolic BP (+0.03%; 95% CI 0.00% to 0.05%) and HR (+0.04%; 95% CI 0.02% to 0.06% for each unit decrease in the HR).ConclusionsCare needs to be taken in interpreting pulse oximetry measurements in patients with lower systolic and diastolic BPs, and HRs, as oxygen saturation is overestimated as BP and HR decrease. Confirmation of the oxygen saturation with an ABG may be appropriate in some clinical scenarios

    Pulse oximeter measurements vary across ethnic groups: an observational study in patients with COVID-19

    Get PDF
    The pulse oximeter provides regular non-invasive measurements of blood oxygenation and is used in a wide range of clinical settings [1]. The light wave transmission that this technology uses is modified by skin pigmentation and thus may vary by skin colour. A recent study of paired measures of oxygen saturation from pulse oximetry and arterial blood gas reported differing outputs in patients with black skin compared to patients with white skin that has the potential to adversely impact on patient care [2]

    Respiratory rate responses to both hypercapnia and acidaemia are modified by age in patients with acidosis

    Get PDF
    ObjectiveTo explore the associations between arterial pO2, pCO2 and pH and how these are modified by age.MethodsAn analysis of 2598 patients admitted with a diagnosis of Covid-19 infection to a large UK teaching hospital.ResultsThere were inverse associations for arterial pO2, pCO2 and pH with respiratory rate. The effects of pCO2 and pH on respiratory rate were modified by age; older patients had higher respiratory rates at higher pCO2 (p = 0.004) and lower pH (p = 0.007) values.ConclusionsThis suggests that ageing is associated with complex changes in the physiological feedback loops that control respiratory rate. As well as having clinical relevance, this may also impact on the use of respiratory rate in early warning scores across the age range
    • …
    corecore